What Is An Engineering Degree Like

Last Updated on September 5, 2022 by Ngefechukwu Maduka

Do you have any knowledge about What Is An Engineering Degree Like? Do you ever feel confused? Do you often feel overwhelmed with all the information available on What Is An Engineering Degree Like so you can’t figure out which one is correct? This article will let you know about What Is An Engineering Degree Like.

The best way to learn more is to keep reading to learn all about What Is An Engineering Degree Like, types of engineering, top 10 reasons to study engineering, benefits of studying engineering in related articles on Collegelearners.

types of engineering

Engineering is a complex discipline and popular choice for international students looking to choose a major to study. An engineering degree is absolutely a versatile choice for students looking to work in a number of different fields. International students will be excited to learn about the different areas within the field of engineering.

Many students deciding on which academic major they want to pursue often ask themselves “What is engineering?” Engineering is a section of technology and science that focuses on the design of engines, machines, structures and electrical systems. Engineering is deeply rooted in mathematics principles. Engineering is also a very broad topic. There are many subsets of engineering that make up the discipline. Engineers can work in careers ranging from astronauts to beer plant engineers.

There are three major branches of engineering that most universities offer an engineering degree in. These main three disciplines are: civil engineering, chemical engineering and mechanical engineering.

Civil Engineering

Civil engineering deals with naturally built structures to include bridges, buildings, roads and other infrastructure projects. Civil engineering is noted as being one of the oldest forms of engineering. Civil engineering is such a great choice for international students because all aspects of industry support the discipline. Civil engineers are employed by both the private and public sectors, with graduates going on to work for construction companies and engineering firms in the private sector, and government agencies in the public sector. Most people identify civil engineering with architecture, and they would be absolutely right. Design is a very important aspect of the civil engineering. Some of the greatest modern achievements in architecture were constructed by civil engineers. The new World Trade Center building in New York City was designed and constructed using top engineers. Historical monuments like the Eiffel Tower in Paris were also constructed by famous engineers.

To be a top civil engineer, an academic degree from an accredited university is necessary. Most universities offer an undergraduate program in civil engineering. In addition, many schools offer graduate degrees in civil engineers for those students wanting to set themselves apart and advance their education.

Chemical Engineering

Chemical engineering combines the core principle of engineering and applies them to the field of physical sciences like chemistry and biology. This discipline seeks to engineer certain chemicals into usable means. Chemical engineers often manage the engineering operations at manufacturing plants that create new machinery for the chemistry industry, and also develop new products using chemical compounds that are beneficial to the public. Chemical engineers are often employed by pharmaceutical companies, petrochemical companies and engineering firms. With these types of employers, engineers turn raw materials into useable products like medicines and fuels. Chemical engineers also seek to create chemical process more efficient and cost effective and reduce pollution from processes or products. Chemical engineers often require an advanced degree, so international students interested in this discipline should consider graduate programs as well.

Mechanical Engineering

What is mechanical engineering? Mechanical engineering brings in the core principles of engineering like mathematics and physics, and applies them to the design and manufacturing of mechanical products like engines and heavy machinery. Mechanical engineering is by far the broadest discipline, allowing students to work in a slew of different career opportunities. Mechanical engineers work for a number of different types of industries. These types of engineers can be seen working for motor companies designing and improving combustion engines, in manufacturing plants improving process and providing quality assurance to plants, and even working in the manufacturing of heavy equipment like sea vessels and tanks. Mechanical engineers always require an undergraduate degree. Many international students decide to study mechanical engineering because the degree is so versatile it often overlaps other forms of engineering and provides for great career outlooks.

Though these three branches are the most popular, there are certainly other areas a student may want to study. Other areas an international student would be interested in getting an engineering degree in include electrical engineering, computer engineering, aeronautical engineering, nuclear engineering, and materials engineering. So what is engineering? Engineering is so broad it is really too hard to give it a single answer!

What Coursework Should I Expect With an Engineering Degree?

Experts who work for national science think tanks predicted years ago that the U.S. economy would experience a shortage of qualified professionals in areas like science, technology, engineering and mathematics (STEM), and education advocates encourage college bound students to prepare themselves academically to enroll in engineering degree programs. Many of today’s students are interested in engineering careers because of the plentiful, challenging job opportunities available to them and the higher than average pay scales that are associated with those careers. However, most of those career paths are open only to industry professionals who successfully complete the challenging course work that is needed to earn engineering degrees. Recent surveys have shown that many of these classes and technical laboratories are so rigorous that a high percentage of engineering students end up changing their majors and not realizing their professional goals to become engineers. Here are some examples of course topics that many engineering students must take to graduate.

Differential Equations and Numerical Methods

Engineering students can expect course work that is heavily math centric. Course topics like calculus, probability and stochastic processes are common to all engineering disciplines. Other math course topics that are usually taken by engineering students early in their undergraduate years are differential equations and numerical methods. Differential equations describe the relationship between functions and their associated derivatives. Engineers use these equations to understand the characteristics of a physical function and how the function is affected by changes to outside stimuli. This knowledge is useful for building a variety of every day products and structures like storm windows, earthquake resistant buildings and automobile braking systems. These engineers use numerical methods to create computer programs that allow them to model and simulate the physical functions and the outside stimuli; these models can be used in product stress tests. Engineers who master the application of these mathematical concepts help to create a variety of new and safer products for public use.

Computing for Engineers and Scientists

Computers are used prominently by engineers and scientists, and these devices have enabled them to create more detailed and accurate work products. Besides using computers to quickly conduct research via the internet, engineers use computers to create complex models like the one used in the differential equation example mentioned above. The course work in a computing class for engineers usually covers programming fundamentals for languages like C++ and Fortran. These classes also expose students to topics that help them to develop their data analysis and quantitative problem solving skills.

New Product Development

A primary reason why some students enter the field of engineering is to have the opportunity to build useful devices, and many companies still expect their engineers to bring the creativity and technical skills required for new product development into the work place environment. Subsequently, universities offer classes that instruct students about product development lifecycle phases and the necessary processes for transforming innovative ideas into new products. Some of these courses emphasize the development of environmentally friendly products within the energy sector.

Bachelor’s in Engineering Degrees

Most engineering programs in the United States offer a Bachelor’s Degree in Engineering. It is the most common degree offered by engineering schools, and is also a staple to work as an FE (Functional Engineer certification) in the field to ultimately pursue your PE (Professional Engineer Certification).

Graduates of Bachelor’s in Engineering degree programs can have multiple opportunities. The U.S. Bureau of Labor Statistics estimates ranges of ~$40,000 and $130,000 for engineers in the U.S. (source), among the highest average salaries in the U.S. There is a huge push by many politicians in the U.S., including the presidential administration, to get more students into STEM (Science, Technology, Engineering, and Math) fields.

Studying Engineering at the Undergraduate Level

  1. A main reason is that statisticians estimate a need for employment in those areas – simply put, there are more jobs available and there will continue to be as time goes on. More jobs available means more opportunities for you to find that perfect job.
  2. Another reason is that with the demand for engineers, salaries should also be on the rise in nearly every engineering field. It’s the simple law of supply and demand – unfortunately there are not a ton of engineers out there, so every engineer has a ton of value.
  3. Lastly, science and technology have advanced the fields of engineering so fast that new engineers are needed. Computer and electrical engineering are very exciting fields, and health care networking advancements have opened up new employment areas and more need for bright individuals.

Individuals who are interested in an engineering career have many engineering fields from which to choose. Becoming an engineer requires at least a bachelor degree in an engineering field. Licensing is required for many types of engineering. To comply with licensing laws and improve employment opportunities, choose an engineering program that’s accredited by ABET (Accreditation Board for Engineering and Technology, Inc.).

 

Online Bachelor’s in Engineering Degree Programs

Online education has become increasingly popular in recent years not only because of the flexibility and convenience it offers students but also because it allows the student to earn a degree while continuing to work. Engineering programs at the bachelor degree level are not offered online as much as master degree programs because of the internship requirements, but they are offered online.

An example of an online program is the online electrical engineering program at Arizona State University. The most commonly offered online engineering programs are in electrical, computer, software and mechanical engineering, according to U.S. News & World Report.

Common Bachelor’s in Engineering Degrees

Although each type of engineering is unique, the educational programs have many similarities. In addition to classroom learning and lab studies, they all require the student complete field work, internships or participate in cooperative education to obtain real experience. Engineers working in fields requiring licensure must pass licensing exams through the NCEES – FE, PE, and SE certifications. The major difference is in the major-related and elective courses in each engineering field.

Here is an overview on the most popular engineering bachelor degree programs.


Bachelors Degree in Computer Engineering

Computer engineering, an integration of computer science and electrical engineering, is used to develop computer software and hardware; however, unlike CS and EE, computer engineers use data structure and abstract algorithms to control devices. Rich in computer science courses, computer engineering programs utilize many elective courses, allowing students to customize a program to meet their areas of concentration.

This can be seen in the computer engineering program at Georgia Institute of Technology, which offers concentrations in embedded systems and software; distributed systems and software; design tools, test, and verification; computer architecture; computer networks and networking; and VLSI design. Georgia Tech also offers students a cooperative education opportunity. Graduates may also work as computer hardware engineers or may advance their careers and work as information systems managers.

Bachelor’s Degree in Software Engineering

Software engineering, also categorized with computer software engineering, deals with the design, management and installation of computer software products. Software engineering students must have a solid background in mathematics and be knowledgeable in computer programming. Generally speaking, students participate in internships, seminars, co-op work experiences and even designing a software product as a senior project. Courses include fundamentals of software development; applied discrete mathematics; algorithms and data structure; software testing; and software design methods.

Bachelor’s Degree in Electrical Engineering

Electrical engineering and electronics engineering are two very closely related fields and often used interchangeably. Electrical engineers design and install electrical systems while electronic engineers design and inspect electronic equipment. One example of the difference is in the automotive industry. Electrical engineers design the entire electrical system of the car while electronic engineers design and test the small electronic components like the GPS or stereo systems. Electrical and electronics engineers who plan to work for the government need to be licensed by passing engineer licensing exams.

The electrical engineering program at California Institute of Technology focuses strongly on electronics and electronic systems through theoretical courses, comprehensive lab courses and extensive research. Students learn about bio-options and bio-electronics; power and energy systems; control theory; wireless systems; solid-state materials and devices; communications; modern optics; computational vision and more.

Some colleges, like the University of Pittsburgh Lawrence Technological University, offer electrical engineering programs with concentrations in electronics or in electronics engineering. Other areas of concentrations might be electrical energy systems; embedded systems; and biomedical instrumentation. The U.S. Bureau of Labor Statistics (BLS) reports that one in every five civil engineers have master degrees, which are usually required for managerial positions.

Bachelor’s Degree in Civil Engineering

Almost everything large we see in the world has been designed by civil engineers, from dams, roads and bridges to tunnels and airports and many more large construction projects. Also known as the people’s engineers, civil engineers may not do the actual building but they do the designing and they monitor their projects to ensure they’re operating correctly. Civil engineers must be licensed in all states where they sell their services.

Civil engineering programs, like the one at Michigan Technological University, may offer concentrations in geotechnical engineering; construction; transportation; structural engineering; and water resources. MTU’s program also offers minors in municipal engineering and remote sensing. Students gain most of their education from research projects, seminars, and extensive hands on training in the research, teaching and training labs. For a senior capstone course, students team up and help design a real client-based project using what they’ve learned throughout the program.

Bachelor’s Degree in Project Management for Engineering

Project management engineering programs teach students the basic principles of complex engineering projects and how to develop methods of project management and organization. They work in many industries and often work with civil engineers, helping to set up and manage a project so it will run efficiently and in a time- and cost-effective manner. Project management may be offered as a dual-degree program with a bachelor of engineering.

Areas of emphasis in an engineering and project management program might include lean construction, risk assessment and management, construction management, project and corporate management, engineering management, construction disputes & claims resolution, and project finance. A similar program is offered at the University of California, Berkeley.

Bachelor’s Degree in Engineering Management

Engineering management degrees are similar to project management degrees in that it also teaches students to understand the complex nature of engineering projects and how to develop projects that operate efficiently and save the industry money and time. Students take courses like quantitative problem solving, business law, and special topics in business. Many schools, like Michigan Tech, enable students to learn through research, internships and cooperative education opportunities.

Despite the fact that engineering degrees can help graduates earn excellent wages and find good careers, many engineering students pursue an MBA because they’re also interested in a business career or may want employment at the business end of an industry. This is particularly a wise career move for the individual that wants a managerial position in an engineering firm.

Schools offering combined engineering bachelor and MBA programs, such as the University of Buffalo, turn what would individually take six years to complete down to a five-year program. UB offers MBA programs with several different engineering fields.

Difference Between BSC and BEng

BSC vs BEng

Graduation is just around the corner for many senior high school students. For most of them, that would mean starting to apply for a university or college of their choice, to pursue a tertiary education degree that would help them land a stable job, and launch them into their desired career path.

Nowadays, applying for a college degree is actually a lot more complicated than it was when our parents did the same thing. With so many universities and colleges offering extremely specialized courses and degrees, many students find themselves having difficulty in chosing which degree is the right one for their ideal career path. This is partly because of the degree prefixes that are attached to certain degrees. Aa example would be trying to see the difference between a BSC and a BEng.

BSC actually stands for Bachelor of Science, while BEng stands for Bachelor of Engineering. A Bachelor of Science degree is commonly recommended for any college degree that requires a student to complete three to five years of education. It is the most common bachelor’s degree title, and it is provided by most universities and colleges. In fact, many colleges and universities will refer to all their programs as Bachelor of Science degree programs. On the other hand, BEng is an undergraduate degree, that is awarded to a student who completes an engineering academic program, which lasts anywhere between three to five years. This bachelor’s degree award is commonly used for undergraduate college degrees in colleges and universities in Australia, China, Germany, New Zealand, Singapore, the United States and the United Kingdom.

Another difference between a BSC and a BEng undergraduate degree, is the academic program that the students undergo for three to five years. BSC degrees are usually theoretically based. This means that most, if not all, of the courses that they would need to complete in the program, involve the use of research, and the proper understanding and analysis of theories and principles that are presented in textbooks, journal reports and past experiments. This includes engineering courses that are considered as Bachelor of Science degree programs. While there are certain laboratory courses that the student needs to complete, these are often done in controlled environments, in order to prove and give the students a further understanding of the theories and principles discussed in class. On the other hand, BEng undergraduate degree programs are more practically oriented. They are the complete inverse of BSC degree programs. Here, students do introduce and familiarize themselves to theories and principles, but the bulk of the academic program is concentrated in applying these theories and principles in a practical manner, which would help them be more prepared when they go and join the corporate world.

Summary

1. BSC and BEng courses are undergraduate degree programs awarded to a student (by a university or college), who has completed an academic program that lasts anywhere between three and five years.

2. BSC is an abbreviation which stands for Bachelor of Science. On the other hand, BEng stands for Bachelor of Engineering.

3. BSC focuses more on theories and principles, while BEng focuses more on practical application.

How Difficult Is Engineering School?

How Hard is Engineering?

“Engineering” sounds like a difficult discipline. It involves more math and physics than most students want to take.

It’s true: studying engineering is hard!

But some engineering majors are more difficult than others. And even though the classes are rigorous a dedicated student can make it through.

Are you trying to decide whether to study engineering in college? Or want to know if the course load is worth getting an engineering job? Read on to learn about what the coursework is actually like.

 

Engineering Degree Return on Investment (ROI)

As far as four year college degrees go a B.S. in most engineering fields has one of the best values available.

You can think of return on investment in education as the earning potential of a degree minus the cost of getting that degree.

The cost of completing a degree in a specific field doesn’t vary much at the same college so the determining factor for ROI will be the salary you earn after graduating. Since engineering is up there with finance in high average starting salaries you can see why many students choose an engineering degree for its value.

Of course this simplified metric makes two huge assumptions:

  1. You graduate college in 4 years with a degree
  2. You get a job after graduation using your engineering degree

But those two events are not a given!

In fact, each has huge challenges. More than half (60%) of students who start out freshmen year seeking an engineering undergraduate degree do not graduate with one. Your chances will improve if you can find an internship while studying.

This article discusses how difficult studying engineering really is and how to decide if it’s the best choice for you.

Why Studying Engineering Is So Challenging

Why is engineering so hard? It’s so difficult because engineering programs try to prepare their students to enter the workforce. This means teaching them to solve really challenging problems. This requires a lot of studying and perseverance.

Usually it’s the math or the workload that students struggle with. Let’s look at both the math and the workload needed to get through a degree.

Is Engineering Math Hard?

Engineering students will need to learn Calculus I, II and III, differential equations and statistics. Aerospace and Electrical require a few more specialized math classes than others like Mechanical, Civil, Software and Petroleum.

The math courses are challenging but students have many resources available to help them. In general, if you were able to do well in your first Calculus class as a high-schooler then you have the skills to learn the more advanced math required for engineering in college.

Student’s Workload

The problems most student face in completing a degree isn’t just the rigor of the courses. With enough tenacity and sharp study skills even a mediocre math and science student can get through engineering undergrad. The real challenge is that students have to apply that incredible work ethic to every difficult course they take.

Undergraduate students take 5-7 courses each semester. In less rigorous degrees about half of those will be easy electives. But in technical programs those “electives” are challenging courses that apply the advanced math you learned in other courses. That means there’s little room for slip ups.

In short, it’s easy to fall behind and be discouraged. A tough college program teaches you persistence and resourcefulness as much as it teaches technical skills.

Easiest Engineering Degree

What is the easiest engineering degree to earn?

How Hard is Engineering School?

No matter what degree you choose the 4 years it takes to get a Bachelor of Science in any engineering field takes discipline. Most engineering curriculum start out with the same 2 years of math, physics and economics.

The difficulty of graduating varies a bit through the different engineering fields. Each one has slightly different applications in the job market and requires different specialized courses.

Studying Mechanical Engineering

A Mechanical Engineering degree takes a lot of discipline. Students will need to take introduction electrical, computer science and materials classes while still focusing on their major.

Depending on the program expect specialized courses to be in machine design, feedback and CAD. Students also have the opportunity to take elective courses in machining or robotics.

How Hard is Electrical Engineering?

Electrical Engineering is viewed as the most challenging of the core engineering fields. The reason for this is the heavy weight of advanced math students will need to apply in their electrical courses.

In their last 2 years students will learn more about electrical design and power efficiency.

Studying Civil Engineering

Civil Engineering is a very useful degree on its own and also sets the student up for exciting specialties. The civil classes that focus on building and design use mechanics (Physics 1), which is one of the more intuitive fundamentals. You will have to pass Physics 2 (electromagnetism) and advanced Calculus courses but don’t have to worry about applying them.

Specialized courses for Civil involve surveying and learning about building materials.

Chemical Engineering

Chemical has a rigorous curriculum. These students need to learn all the fundamentals required by basic engineering and then have the added challenge of chemistry and mass transfer. Chemical Engineering programs usually require more lab time than other disciplines which can make the workload even more challenging.

Aerospace Engineering Difficulty

Aerospace is rightly seen as a particularly challenging course of study. It is even more difficult than mechanical engineering because it has similar courses and then takes students through more focused elements. Unlike other specialties, Aerospace majors will take Linear Algebra and apply it in their specialized courses like orbital mechanics.

Software Engineering Difficulty

Software Engineers don’t have the foundation in physics and materials that other students go through. In a way this can make the course of study easier for someone who quickly catches on to computer science concepts. Advanced courses will focus on data structures and maybe machine learning.

Toughest Engineering Degree

Which engineering degree is the hardest?

Is Studying Engineering Worth It?

Engineering college is tough and for many students it will be the first time they struggle in a math or physics class. This makes you wonder whether it’s worth it to continue.

To decide for yourself whether continuing your engineering education is the right choice for you take the time to think about the career you’re setting up for yourself.
If the courses that are making you regret pursuing a Mechanical degree are labs and circuits that you don’t expect to see again after graduation then keep going. But if you realize that the challenge and ambiguity of problems is what bothers you then engineering will not be the best career choice.

Talk to a mentor either in your internship or at your college to get a better idea of what real-world work looks like. They will help remind you that the four years you spend in college don’t really reflect what working life will be like.

Completing an Electrical Engineering or Chemical Engineering degree will not have all the same challenges as jobs in those fields. But it does give you a good introduction. Spend some time researching job opportunities in your area of study. This should give you a good idea of what the day to day life is like as an engineer.

Best universities for engineering degrees 2020

 

Find the best colleges for engineering and technology using Times Higher Education’s World University Rankings data

 

Studying engineering is a smart choice for career-minded students and there are technical universities all over the world offering world-class degrees.

Most students in Europe enrol on a degree for a specific discipline within engineering. Common specialisations include civil engineering, electrical engineering and chemical engineering.

The 2020 subject ranking for engineering and technology, from Times Higher Education features 1,008 universities across more than 70 countries.

Although the schools at the very top are in the United States and the United Kingdom, universities in Singapore, China and Switzerland perform extremely well and appear high up the rankings.

China is the third most-represented country in the list of the best universities for engineering, ahead of the UK, Germany, Australia and Canada. Only Japan and the United States have a higher number of universities present in the ranking.

The ranking uses the same methodology as the THE World University Rankings, but with a higher weighting for innovation and a lower weighting for citations.

Scroll down for a full list of degrees covered by the ranking and what you can do with these degrees.

Top 5 universities for engineering degrees

=1. California Institute of Technology

Three of the six academic divisions at the California Institute of Technology teach and research engineering and technology subjects: the biology and biological engineering division, the chemistry and chemical engineering division, and the engineering and applied science division.

Both teaching and research are fairly cross-disciplinary. Undergraduates declare a major at the end of their first year.

There are five distinct engineering majors and an interdisciplinary studies programme that allows students to customise a course of study.

Caltech is one of the smallest universities in the world but prides itself on ambition and innovation.

=1. Stanford University

Stanford University’s School of Engineering has been at the cutting edge of new technology and innovation for the past century.

There are nine departments in the school and additional institutes, laboratories and research centres.

Research focuses on 10 of the “most daunting human challenges of the coming decades”. These are: systems design, bioengineering, network security, climate change, robotics, information technology, materials and matter, urban design, affordable accessible healthcare, and computation and data analysis.

Across the nine departments there are eight interdepartmental undergraduate programmes that students can major in.

 

=3. University of Cambridge

The University of Cambridge` engineering department is the largest department at the university.

Undergraduate students are able to learn across all of the engineering disciplines in the first and second years and are then required to specialise from third year onwards. Almost all undergraduate students study the four-year programme that results in a master’s degree.

Graduate students are given the opportunity to get to the heart of research and development, with the vast majority of research students studying for a PhD.

The department also undertakes research in a number of different engineering fields including electrical engineering, manufacturing and management and civil engineering, among others.

=3. Harvard University

The John A Paulson School of Engineering and Applied Sciences is the newest school at Harvard University, having been established in 2007. Its roots are in the Lawrence Scientific School, which was founded in 1847 and became a school in its own right in 2007.

The school covers a number of teaching areas such as applied mathematics, applied physics, bioengineering, computer science, electrical engineering, environmental science and engineering, and materials science and mechanical engineering.

Alumni from the school have been awarded a Nobel Prize, a MacArthur Award, a Turing Award and a Guggenheim Fellowship, among others.

5. University of Oxford

University of Oxford students are admitted for a specific engineering degree, differing from US universities where students can pick from various strands of engineering to study.

For undergraduates, this will be a four-year course in engineering science or more specifically biomedical engineering, chemical engineering, civil engineering, electrical engineering, information engineering or mechanical engineering.

Just under half of all applicants for these courses get through to the interview round and 15 per cent secure a place on a course.

Many Oxford engineering graduates go on to careers as professional engineers, although some enter business, consultancy or further study.

Best universities for engineering 2020

Click each institution to view its World University Ranking 2020 profile

Engineering Rank 2020Engineering Rank 2019UniversityCountry/Region
 =1 4California Institute of TechnologyUnited States
 =1 2Stanford UniversityUnited States
 =3 6University of CambridgeUnited Kingdom
 =3 3Harvard UniversityUnited States
 5 1University of OxfordUnited Kingdom
 6 5Massachusetts Institute of TechnologyUnited States
 7 7Princeton UniversityUnited States
 8 9ETH ZurichSwitzerland
 =9 13University of California, Los AngelesUnited States
 =9 10Georgia Institute of TechnologyUnited States
 11 12Imperial College LondonUnited Kingdom
 12 8National University of SingaporeSingapore
 13 14Peking UniversityChina
 14 11University of California, BerkeleyUnited States
 15 15Nanyang Technological University, SingaporeSingapore
 16 17Carnegie Mellon UniversityUnited States
 17 16University of Michigan-Ann ArborUnited States
 18 20Tsinghua UniversityChina
 19 18École Polytechnique Fédérale de LausanneSwitzerland
 20 21Yale UniversityUnited States
 21 19Delft University of TechnologyNetherlands
 22 22University of Texas at AustinUnited States
 23 23University of Illinois at Urbana-ChampaignUnited States
 24 23The Hong Kong University of Science and TechnologyHong Kong
 25 26Technical University of MunichGermany
 26 25Cornell UniversityUnited States
 27 31University of TorontoCanada
 28 29University of California, Santa BarbaraUnited States
 29 42University of Science and Technology of ChinaChina
 30 27RWTH Aachen UniversityGermany
 31 =37The University of TokyoJapan
 32 33Korea Advanced Institute of Science and Technology (KAIST)South Korea
 33 34Columbia UniversityUnited States
 34 35University of California, San DiegoUnited States
 35 28Purdue University West LafayetteUnited States
 36 32Northwestern UniversityUnited States
 37 30University of PennsylvaniaUnited States
 38 =37Johns Hopkins UniversityUnited States
 39 =37Zhejiang UniversityChina
 40 36Seoul National UniversitySouth Korea
 41 43Shanghai Jiao Tong UniversityChina
 42 40University of Hong KongHong Kong
 43 65University of British ColumbiaCanada
 44 44University of Wisconsin-MadisonUnited States
 45 =47University of Southern CaliforniaUnited States
 46 41UCLUnited Kingdom
 47 55McGill UniversityCanada
 48 45KU LeuvenBelgium
 49 =47Duke UniversityUnited States
 50 =57University of WashingtonUnited States
 51 52Penn State (Main campus)United States
 =52 56University of ManchesterUnited Kingdom
 =52 51Rice UniversityUnited States
 54 68Pohang University of Science and Technology (POSTECH)South Korea
 =55 46Kyoto UniversityJapan
 =55 =63Ohio State University (Main campus)United States
 =55 =61Texas A&M UniversityUnited States
 58 50Sungkyunkwan University (SKKU)South Korea
 59 71UNSW SydneyAustralia
 60 60Technical University of BerlinGermany
 61 99Huazhong University of Science and TechnologyChina
 62 53KTH Royal Institute of TechnologySweden
 63 =61City University of Hong KongHong Kong
 64 59Tokyo Institute of TechnologyJapan
 65 79New York UniversityUnited States
 66 92National Taiwan UniversityTaiwan
 67 49Fudan UniversityChina
 68 70University of MelbourneAustralia
 69 66Technical University of DenmarkDenmark
 70 =63Monash UniversityAustralia
 =71 =82Chalmers University of TechnologySweden
 =71 =72Virginia Polytechnic Institute and State UniversityUnited States
 73 69Eindhoven University of TechnologyNetherlands
 74 54Karlsruhe Institute of TechnologyGermany
 75 =82Nanjing UniversityChina
 76 75University of SouthamptonUnited Kingdom
 =77 63Chinese University of Hong KongHong Kong
 =77 =72Paris Sciences et Lettres – PSL Research University ParisFrance
 79 =57University of EdinburghUnited Kingdom
 80 =76University of California, DavisUnited States
 81 =76Australian National UniversityAustralia
 82 80Brown UniversityUnited States
 83 81University of Maryland, College ParkUnited States
 =84 101–125Arizona State University (Tempe)United States
 =84 89University of California, IrvineUnited States
 =86 88University of MinnesotaUnited States
 =86 93University of SydneyAustralia
 88 =90TU DresdenGermany
 89 101–125University of WaterlooCanada
 90 74Tohoku UniversityJapan
 91 87University of WollongongAustralia
 92 =90Aalborg UniversityDenmark
 93 86University of BristolUnited Kingdom
 =94 97University of Erlangen-NurembergGermany
 =94 85University of QueenslandAustralia
 96 70Hong Kong Polytechnic UniversityHong Kong
 97 101–125Queen Mary University of LondonUnited Kingdom
 98 100Korea UniversitySouth Korea
 99 =95Indian Institute of ScienceIndia
 100 101–125Polytechnic University of MilanItaly
 101–125 101–125Aalto UniversityFinland
 101–125 101–125University of AdelaideAustralia
 101–125 101–125University of California, RiversideUnited States
 101–125 =95University of Colorado BoulderUnited States
 101–125 84École PolytechniqueFrance
 101–125 NRUniversity of GroningenNetherlands
 101–125 101–125Harbin Institute of TechnologyChina
 101–125 101–125Lund UniversitySweden
 101–125 101–125University of MassachusettsUnited States
 101–125 101–125Michigan State UniversityUnited States
 101–125 101–125National Tsing Hua UniversityTaiwan
 101–125 101–125North Carolina State UniversityUnited States
 101–125 101–125University of NottinghamUnited Kingdom
 101–125 176–200Queen’s University BelfastUnited Kingdom
 101–125 101–125Sant’Anna School of Advanced Studies – PisaItaly
 101–125 101–125University of SheffieldUnited Kingdom
 101–125 94University of StuttgartGermany
 101–125 101–125Technical University of DarmstadtGermany
 101–125 101–125University of Technology SydneyAustralia
 101–125 126–150The University of Tennessee-KnoxvilleUnited States
 101–125 98Tongji UniversityChina
 101–125 126–150Ulsan National Institute of Science and Technology (UNIST)South Korea
 101–125 101–125Wageningen University & ResearchNetherlands
 101–125 126–150University of WarwickUnited Kingdom
 101–125 101–125Xi’an Jiaotong UniversityChina
 126–150 126–150University of AlbertaCanada
 126–150 126–150University of BirminghamUnited Kingdom
 126–150 151–175Boston UniversityUnited States
 126–150 126–150Case Western Reserve UniversityUnited States
 126–150 126–150Colorado School of MinesUnited States
 126–150 101–125University of FreiburgGermany
 126–150 151–175Ghent UniversityBelgium
 126–150 151–175King Abdulaziz UniversitySaudi Arabia
 126–150 126–150University of LeedsUnited Kingdom
 126–150 126–150Linköping UniversitySweden
 126–150 151–175Lomonosov Moscow State UniversityRussian Federation
 126–150 126–150University of LuxembourgLuxembourg
 126–150 101–125University of MacauMacao
 126–150 151–175University of MalayaMalaysia
 126–150 101–125University of North Carolina at Chapel HillUnited States
 126–150 101–125University of Notre DameUnited States
 126–150 151–175Pompeu Fabra UniversitySpain
 126–150 126–150Rutgers, the State University of New JerseyUnited States
 126–150 151–175Southeast UniversityChina
 126–150 126–150University of SurreyUnited Kingdom
 126–150 176–200Tianjin UniversityChina
 126–150 126–150Vanderbilt UniversityUnited States
 126–150 151–175Vienna University of TechnologyAustria
 126–150 126–150University of Western AustraliaAustralia
 126–150 101–125Wuhan UniversityChina
 151–175 201–250University of AucklandNew Zealand
 151–175 151–175University at BuffaloUnited States
 151–175 151–175University of California, Santa CruzUnited States
 151–175 176–200Cardiff UniversityUnited Kingdom
 151–175 201–250Curtin UniversityAustralia
 151–175 151–175Dartmouth CollegeUnited States
 151–175 101–125University of DelawareUnited States
 151–175 176–200Drexel UniversityUnited States
 151–175 176–200University of Duisburg-EssenGermany
 151–175 201–250Edith Cowan UniversityAustralia
 151–175 151–175Indian Institute of Technology BombayIndia
 151–175 201–250Indian Institute of Technology DelhiIndia
 151–175 176–200University of LiverpoolUnited Kingdom
 151–175 126–150Nagoya UniversityJapan
 151–175 176–200Nankai UniversityChina
 151–175 201–250Northeastern UniversityUnited States
 151–175 126–150Norwegian University of Science and TechnologyNorway
 151–175 201–250University of OuluFinland
 151–175 201–250Queensland University of TechnologyAustralia
 151–175 126–150Ruhr University BochumGermany
 151–175 126–150University of South AustraliaAustralia
 151–175 151–175Trinity College DublinRepublic of Ireland
 151–175 151–175University College DublinRepublic of Ireland
 151–175 126–150Victoria UniversityAustralia
 151–175 126–150Yonsei University (Seoul campus)South Korea
 176–200 176–200Aarhus UniversityDenmark
 176–200 176–200University of ArizonaUnited States
 176–200 126–150University of BathUnited Kingdom
 176–200 201–250Binghamton University, State University of New YorkUnited States
 176–200 176–200Centrale NantesFrance
 176–200 201–250CentraleSupélecFrance
 176–200 151–175Deakin UniversityAustralia
 176–200 126–150University of FloridaUnited States
 176–200 151–175Griffith UniversityAustralia
 176–200 126–150Hanyang UniversitySouth Korea
 176–200 251–300Hunan UniversityChina
 176–200 176–200University of IcelandIceland
 176–200 176–200Khalifa UniversityUnited Arab Emirates
 176–200 151–175Polytechnic University of TurinItaly
 176–200 176–200Qatar UniversityQatar
 176–200 176–200RMIT UniversityAustralia
 176–200 151–175Soochow UniversityChina
 176–200 151–175Sorbonne UniversityFrance
 176–200 201–250Southern University of Science and Technology (SUSTech)China
 176–200 201–250Sun Yat-sen UniversityChina
 176–200 201–250Swinburne University of TechnologyAustralia
 176–200 NRTampere UniversityFinland
 176–200 NRTélécom ParisFrance
 176–200 151–175University of Texas at DallasUnited States
 176–200 126–150University of TwenteNetherlands

What can you do with a general engineering degree?

 

An essential guide to what you will learn on a general engineering course, what you should study to get your place on a degree, and what jobs you can get once you graduate

 

What is general engineering?

General engineering is the branch of science and technology dealing with the design, building, maintenance and use of engines, machines and structures. It includes subcategories such as electrical, chemical, mechanical, civil, architectural engineering and computer engineering.

Engineers are essential to finding solutions to both developing and developed economies’ problems.

Engineering is directly linked to environmental, economic, legal, social and political contexts, so a broader degree in general engineering, or even a double degree of engineering with another discipline might help you exercise your skills better.

General engineering is also a good option for those who are undecided on the kind of engineering they’d like to specialise in. Some universities will give you the option to do a general engineering degree in your first year and then choose the area of the discipline you’d like to pursue in your second year.

What might you find on a general engineering degree?

A general three or four year engineering degree usually includes covers an overview in the first year with the option to possibly specialise into a branch of engineering in the second year or third year.

Typical first year courses are mathematics with computation, mathematics for engineers and scientists, experimentation, engineering design, mechanical engineering, electromagnetism, thermodynamics and fluid mechanics, electronic measurement, applied mechanics and electric and electronic engineering.

Second year may include modules in further engineering mathematics, further experimentation, further electrical engineering, computer-based modelling, business simulation and classical control. In addition, you may choose to study such courses as communications, electrical engineering, electromagnetism and electronics, embedded systems, properties and processing of materials, mechanics of structures, thermodynamics and fluid dynamics.

Some universities offer the option of doing a project or study abroad in the third year of university.

In the last year of your degree, you may expect to study management, further communications, advanced electrical engineering, electrical power, programmable electronics, advanced control and signal processing, advanced computer systems and digital electronics, advanced applied mechanics, advanced electrical engineering and advanced course on materials among others.

In addition, you will carry your own engineering project.

What should I study to do a general engineering degree?

In order to do general engineering at university, you should ideally study mathematics and physics. Another science is often accepted instead of physics. A lot of universities will require fairly high grades in these subjects. If you don’t get these grades, you can consider a foundation year or take additional assessment tests.

Other subjects such as design and technology or art will help you develop your design skills, which are useful in engineering. Studying an arts or humanities subject will also help you develop written and oral communication and presentation skills which are necessary for team work – a central feature of engineering projects. These subjects will also contribute to your understanding of the world and of the socio-economic and cultural factors with which engineering directly interacts.

You may also want to undertake an extra-curricular engineering project, read engineering books, listen to engineering courses online or attend engineering conferences to prove your interest in the field.

What do people go on to do?

General engineering degrees give graduates analysis and problem solving skills, team-working and leadership skills. This allows them to go into engineering jobs in control engineering, sensors and data processing, telecommunications, computing, energy, transport and utilities companies, architectural and design companies, mobile technologies, biomedical engineering, engineering consultancies or academia.

As an engineer, you may work in laboratories, on building sites or offices. In order to advance in your career in engineering, you may have to take management responsibilities and travel nationally or internationally. You may have to take extra-hours especially when the deadlines are approaching.

Alternatively an engineers’ skill-set is highly prized in non-engineering industries such as finance, business, intellectual property agencies, academia, government bodies, think tanks, Civil Service, non-governmental organisations or regulatory bodies.

Famous people who studied general engineering

Famous people who studied engineering include director Alfred Hitchcock, who graduated from the London County Council School of Engineering and Navigation. The engineering background helped the psychological thriller and suspense director to foresee technical difficulties and come up with new solutions to them. For instance, in Vertigo, Hitchcock made the spectator feel dizzy and have double vision by inventing a technique of zooming in with a camera while moving the camera backward. He had been told this effect would be too costly so his engineering knowledge came in handy.

US President Jimmy Carter also studied engineering at Georgia Southwestern College, Georgia Tech Atlanta and Naval Academy during the Second World War. While President, Carter set up a Department of Energy, which created a national energy policy involving technological innovation, price control and conservation.

types of engineering

Aerospace

Mechanical Engineering Aerospace

Aerospace engineers are responsible for the research, design and production of aircraft, spacecraft, aerospace equipment, satellites and missiles. Work done by aerospace engineers has made such things as speedy mail delivery and moon travel possible. Canadian aerospace engineers designed the Canadarm used on the Space Shuttle and Space Station Alpha.

Agricultural

Agricultural engineering

Agricultural engineers look for solutions to problems involving the use of plants, animals and the natural environment. In the past, they focused largely on improvements to crop and livestock production. While this function continues, the scope of practice is widening to include land and resource management, pollution concerns, machinery for growing non-traditional crops, bio-energy development, and value-added processing of biological materials.

Automotive

Automotive engineering

Automotive engineers design, build, maintain, and operate self – propelled vehicles for use on land or sea, in air or space.

Biological and Biosystems

Biological and Biosystems engineering

Biological and Biosytems Engineers draw on the biotechnologies found in the food, pharmaceutical, petroleum and textiles industries and combine them with engineering design. Engineers in these areas may develop processes in which microorganisms produce antibiotics more efficiently, or conduct research into how microbes can be used to digest oil spills.

Biomedical

Biomedical engineering

Biomechanical and biomedical engineering combine the discipline of mechanical engineering with human anatomy and physiology. Work in this area may include designing prostheses, developing movement systems for people with spinal injuries, and refining equipment for athletes in high-performance sports.

Building

Civil-Engineering - building

Building engineers acquire knowledge in the planning, design, construction, operation, renovation and maintenance of buildings, together with an understanding of impacts on the surrounding environment. Building engineers explore all phases in the life cycle of a building. They identify problems and find appropriate solutions to improve the quality of living within the built environment.

Chemical

chemical - engineering

Chemical engineers apply principles of chemistry, mathematics and physics to the design and operation of industrial equipment and methods for the manufacture of chemical products. The fibers in clothing, soaps and detergents, leather, paints and plastics are all designed and produced by chemical engineers.

Civil

Civil engineering - bridges

Civil engineering is one of the oldest types of engineering. It involves the design, construction and management of municipal infrastructure, highways, railways, transit systems, airports, harbours, bridges, tunnels and buildings. Civil engineers also ensure the availability of high quality water supply and sewage treatment facilities.

Communications

electrical engineering - communications - GPS

Communications engineers plan, analyze, design, implement, operate, test, maintain and manage communications systems and networks. They play a key role in the ongoing development of the Internet and associated technologies.

Computer

electrical-computers-engineering

Engineers who specialize in electronic systems are concerned with the design, analysis and manufacture of electronic circuits and devices.

Construction

Construction engineer

Construction engineers are involved in all aspects of construction projects. They are responsible for overseeing the constructing process from planning through delivery.

Electrical

Electrical engineering

Electrical engineers are involved in the generation, production, transmission, distribution and application of electrical energy: the electricity that lights our homes, helps us cook our food, and powers our machinery. They also make very important contributions to telecommunications, television and computer technology.

Electromechanical Systems

Electromechanical Systems engineering

Electromechanical systems engineering focuses on all the devices which make electrical and mechanical systems work together. People in this field often work for the automotive, power production or airline industries.

Electronic Systems

electronic systems engineering

Engineers who specialize in electronic systems are concerned with the design, analysis and manufacture of electronic circuits and devices.

Engineering Chemistry

Engineering Chemistry

Chemistry, the way atoms and molecules react and interact, plays some role in just about everything.

Engineering chemists use their knowledge of chemistry to develop solutions to engineering problems. They most often work with problems relating to the environment, oil and gas production, and materials development.

Engineering chemists differ from all other engineers because they bring forward chemical solutions to engineering problems. Their expertise is most often applied to environmental development, in the design of processes, and in the design of electronic and structural materials.

Engineering Physics

Coming soon…

Environmental

Environmental engineering - wind turbines

Environmental engineers develop feasible solutions to problems affecting the welfare of humans and nature. They work to prevent pollution of the environment by designing systems of air and water quality control, vibration and noise reduction, and hazardous waste disposal. They also work to clean up contaminated soil, water and air.

Food

Food engineers

Food engineers apply the concepts and principles of engineering to the conversion of raw food stuffs into safe consumer products of the highest possible quality. They work in the areas of food handling, processing, packaging and distribution.

Forestry

forestry-engineering

Forestry engineers study the effects of industrialization on nature, silviculture, hydrology and renewable resources. They are involved in the development of sustainable forestry as well as the design of lumber harvesting and processing equipment.

Gas

Geotechnical - engineering - gas pipelines

Gas Engineers work in the exploration, recovery, development and processing of natural gas reserves. Gas Engineers are involved in such things as determining the best location for drilling new wells, operating gas facilities, and monitoring and forecasting reservoir performance.

Leave a Comment